CLASSWORK/NOTES		NAMI	≣:		
Algebra 1-2: 2.1a Modeling Quar DOK 2: Model You will: Define appropriate quantities f			eling.		
A compares two					
A <i>Conversion factor</i> is a measured in different units. Some co			umbers by divisio	n) with equal quant	ities each:
$\frac{1 \text{ ft}}{12 \text{ in}}$	$\frac{1 \text{ yd}}{3 \text{ ft}}$	$\frac{1 \text{ hr}}{60 \text{ min}}$	$\frac{4 \text{ qts}}{1 \text{ gal}}$	$\frac{16 \text{ oz}}{1 \text{ lb}}$	
determine the proper units for a qua			ating unit measur	res algebraically to	
1) A large adult male human has ab Step A: Convert pints to quarts. 		Step	o B: Convert qua	-	
In words: A large 2) The length of a building is 720 in Step A: Convert inches to feet.			nvert this quanti		
foot			ya	rd	
			• <u> </u>	= eet	-
In words: A	inch buil	ding is	yards.		
Use dimensional analysis to convert	the measures.	Round to the nea	arest tenth.		
3) 7500 seconds to hours					
4) 88 inches to meters (1 meter = 3	.28 ft)				
5) 4 inches to yards					
6) 1 day to seconds					

NAME: _____

When setting up a conversion factor, do you put the given units in the numerator or in the denominator? Why?

?

How do you ensure that the result of your calculation is in the desired unit?

7) During a cycling event for charity, Amanda traveled 105 kilometers in 4.2 hours and Brenda traveled at a rate of 0.2 mile per minute. Which girl traveled at a greater rate? Use 1 mi = 1.61 km.

8) A box of books has a mass of 4.10 kilograms for every meter of its height. A box of magazines has a mass of 3 pounds for every foot of its height. Which box has a greater mass per unit of height? Use 1 lb = 0.45 kg and 1 m = 3.28 ft. Round your answer to the nearest tenth.

9) Alan's go-kart travels 1750 feet per minute, and Barry's go-kart travels 21 miles per hour. Whose go-kart travels faster? Round your answer to the nearest tenth.

NAME:

Algebra 1-2: 2.1b Solving Problems with Rates and Ratios (textbook section 1.2)

DOK 3: Model

You will use units and quantities to understand and solve a real-world problem.

Congratulations! You have just won the state lottery, and now you must choose your prize—either \$250,000 after taxes in cash or free gas for life for you and your registered vehicle only.

- 1. Individually complete parts (a) and (b) without making any calculations, then answer the question in part (c):
 - a. Describe the lifestyle of a person for whom the \$250,000 prize is likely to be the best option.
 - b. Describe the lifestyle of a person for whom free gas for life is likely to be the best option.
 - c. Which prize do you think would be likely to be best for you? Explain why.
- 2. The variables in this problem include gallons of gas, cost of gas, miles driven, time in a lifetime. Brainstorm in your group to create a list of **RATES** that would be helpful in solving this problem.

Example:

 $\frac{\#of miles}{1 gallon of gas}$

3. You'll need to make some assumptions to complete these calculations:

- The type of car you will drive (for gas mileage purposes)
- How many miles you'll drive in a week
- How long is a "lifetime"

Discuss these with your group and agree on the assumptions you will use. To solve this problem, you'll need a string of ratios, something like this...

 $\frac{\$}{1 \text{ gallon}} \cdot \frac{1 \text{ gallon}}{\text{miles}} \cdot \frac{\text{miles}}{\text{time period}} \cdot \frac{\text{time period}}{1 \text{ lifetime}}$

4. Work with your group to translate your assumptions to ratios and use unit conversions to calculate which prize would be likely to have the greatest monetary value for you. Support your answer mathematically.

6. How important do you think assumptions are in a real-world problem?

7. Revisit your answer in part 1c. Would you change which prize you would pick? Explain.

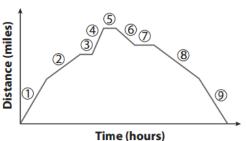
NAME:

Algebra 1-2: 2.2a Interpreting Graphs (textbook section 3.1)

DOK 3: Analyze You will use rates to interpret key features of graphs

The distance a delivery van is from the warehouse varies throughout the day. The graph shows the distance from the warehouse for a day from 8:00 am to 5:00 pm.

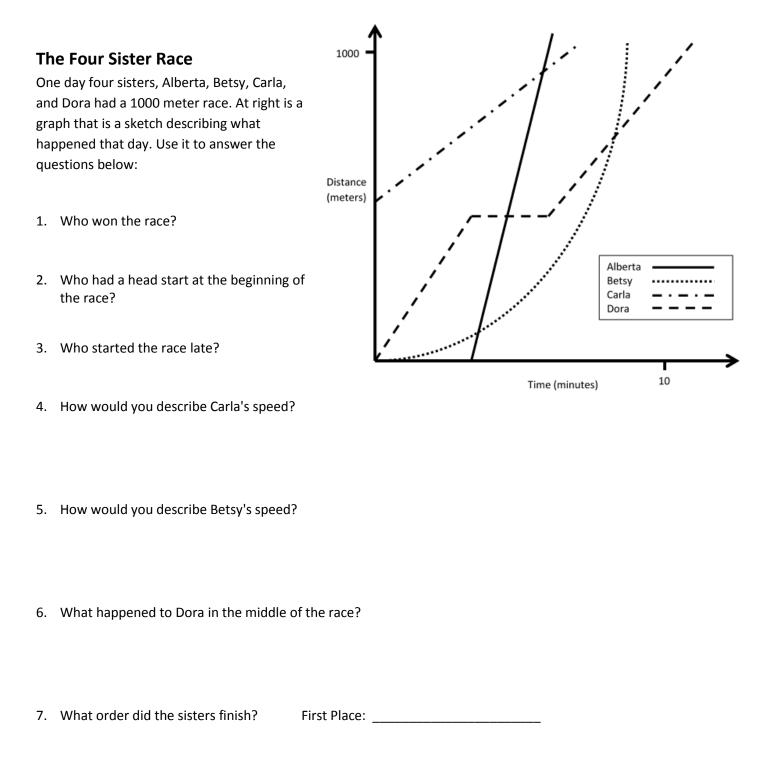
- 1) Segment 1 shows that the delivery van moved away from the warehouse. What does segment 2 show?
- 2) Based on the time frame, what change in the distance from the warehouse is represented by segment 6?


3) Which line segments show intervals where the distance did not change?

- 4) What is a possible explanation for these segments?
- 5) Explain how the slope of each segment of the graph relates to the movement of the delivery truck:
 - a. Positive Slope:
 - b. Negative Slope:
 - c. Zero Slope:

Three hoses fill three different A. B. water barrels. A green hose fills a water barrel at a constant rate. A Water (gallons) Water (gallons) Water (gallons) black hose is slowly opened when filling the barrel. A blue hose is completely open at the beginning and then slowly closed. The three graphs of the situations are Time (hours) Time (hours) Time (hours) shown.

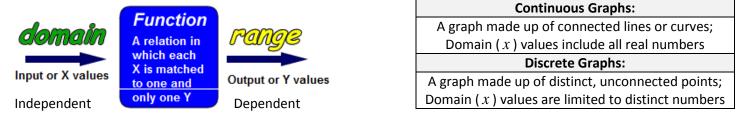
- 6) Which graph best represents the amount of water in the barrel filled by the green hose? ______
- 7) Describe the water level represented by the remaining graphs. Which graph represents each situation?
 - a. Describe the water level for graph A.
 - b. Describe the water level for graph C.


c. Graph A represents the ______hose and graph C represents the ______hose.

nime (nours)

NAME: _____

8) Could a graph of the amount of water in a water barrel slant downward from left to right? Explain



2) _____, 3) _____, 4) _____

Algebra 1-2: 2.2b Graphing Relationships (textbook section 3.1)

DOK 3: Model

You will Use rates to model relationships with graphs

- 1) Simon sold candles to raise money for the school dance. He raised a total of \$25.00 for selling 10 candles. Find the unit rate (amount earned per candle). Then graph the relationship.
 - a. Will the graph be discrete or continuous?
 - b. The x-axis will represent ______, since this is the independent variable. Based on the

problem, the x-axis will need to go from _____ to _____.

c. The y-axis will represent the _____,

since this is the dependent variable. Based on the problem,

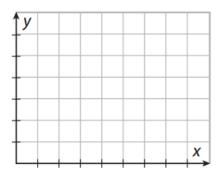
the x-axis will need to go from _____ to _____.

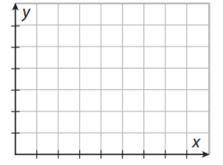
- d. The unit rate is ______ per candle. Using this information, create scales on the x- and y-axes.
- e. Plot points on the graph to represent the amount of money the school earns for the different numbers of candles sold.
- 2) Find domain and range intervals, use unit rates to create scales on the x- and y-axes, and graph the function.
 - a. Alex drove 135 miles in 3 hours at a constant speed.
- b. Max makes \$20 for every bracelet she sells. She has 10 bracelets to sell.

х

Discrete or Continuous

Discrete or Continuous

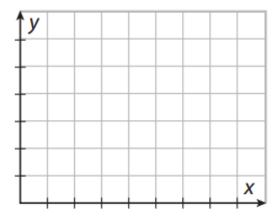

y


Domain:

Range:

Range:

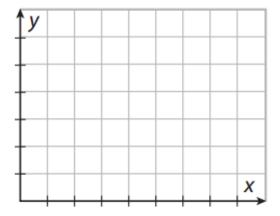
Domain:



3) Ann walks at a rate of 5 miles per hour for 30 minutes to get to the bus stop. She waits 10 minutes for the bus to arrive. The bus drives directly (non-stop) to school at a rate of 40 miles per hour for 10 minutes

b. Will the graph be discrete or continuous?

- c. The domain is ______
- d. The range is _____
- e. Use unit rates to sketch each section.


Section	Time (x)	Distance (y)

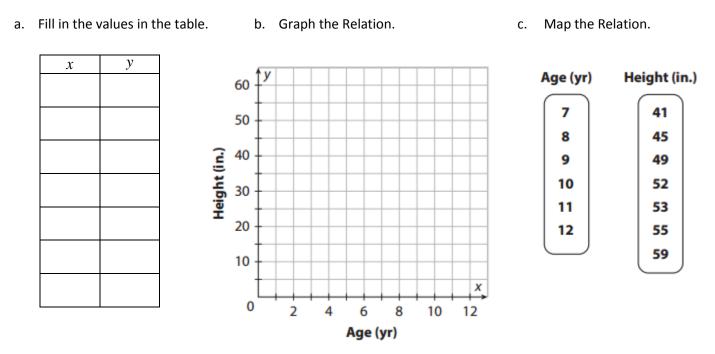
4) A bathtub is being filled with water. After 10 minutes, there are 75 quarts of water in the tub. Then someone accidentally pulls the drain plug while the water is still running, and the tub begins to empty. The tub loses 15 quarts in 5 minutes, and then someone plugs the drain and the tub fills for 6 more minutes, gaining another 45 quarts of water. After a 15-minute bath, the person gets out and pulls the drain plug. It takes 11 minutes for the tub to drain.

- f. Will the graph be discrete or continuous?
- g. The domain is ______
- h. The range is ______
- i. Use unit rates to sketch each section.

Section	Time (x)	Water (y)

DOK 2: Model

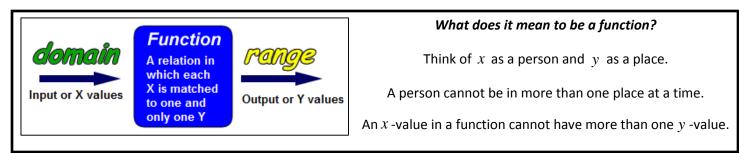
You will identify relations, functions, domain, and range.


A *relation* is a set of ordered pairs (x, y) where x is the input value and y is the output value.

The *domain* is all possible inputs of a relation, and the *range* is all possible outputs of a relation.*

*When stating the domain and range, numbers are listed in order from least to greatest and values are not repeated.

1) For the following relation, the input, x, is the ages of boys and the output, y, is their height (in.).


 $\{(7, 41), (8, 45), (9, 49), (10, 52), (10, 53), (11, 55), (12, 59)\}$

d. State the domain of the relation:

e. State the range of the relation.

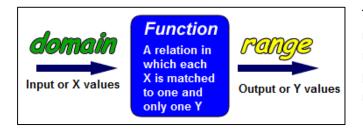
A *function* is a special relation that assigns each element of the domain to exactly one element of the range.

2) The given relation represents the amount of gas in gallons and the distance traveled in miles from that amount of gas. Graph the relation and complete the mapping.

Gas	Distance	l	300	∱ <i>y</i>							Gas (gal)	Distance (mi)
(gallons)	(miles)		250	1								\bigcap
10	150	(mi)	200									
16	240	Distance (mi)	150	-								
17	240	Dis	100									
20	300		50								\bigcup	\bigcup
			0	5	5 1	0	15	20	25			
					C	Gas	(gal)					
a. D	omain:		Th	e dom	iain re	epre	sent	s				
b. R	ange:		_ The	e range	e repr	eser	nts _					
c. Fo	or an input o	of, there	e is a	n outp	ut of			·				
Fo	For an input of, there is an output of											
Fo	or an input o	of, there	e is a	n outp	ut of			·				
Fo	or an input o	of, there	e is a	n outp	ut of			·				
d. T	his relation _.	a functio	on. Ea	ach do	main	valu	ie is	paire	d with	ı		range value.

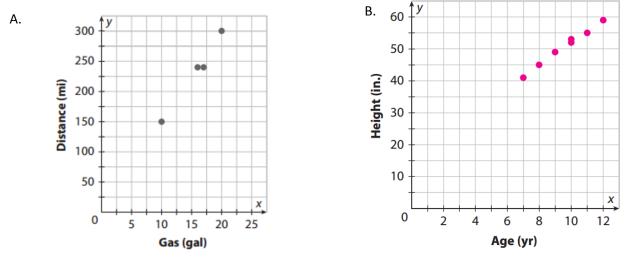
3) What would be true about a relation that is not a function? Give an example of a relation that is not a function.

4) Is the relation of ages of boys and their height from problem 1 a function? Explain.

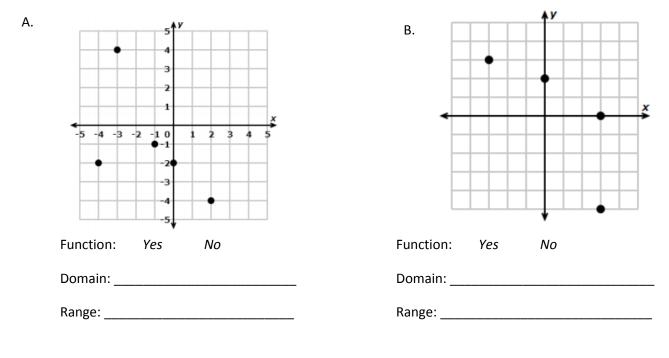

NAME: _____

_ PAGE: ____

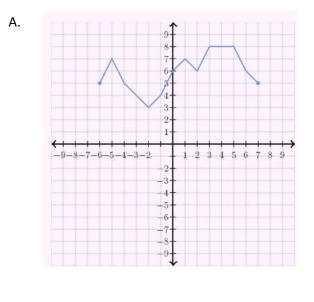
Algebra 1-2: 2.3b Representing Relations and Functions in Graphs (textbook section 3.2)


DOK 2: Analyze

You will identify and represent functions and their domain, and range from graphs.

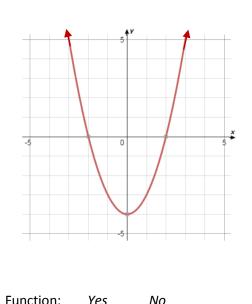

The **VERTICAL LINE TEST**, can be used to determine if a relation is a function. The vertical line test states that a relation is a function if and only if a vertical line does not pass through more than one point on the graph of the relation.

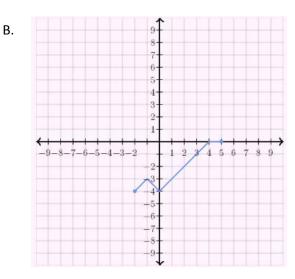
1) Here are two graphs from our previous lesson. Use the *vertical line test* to determine if they are functions.


Domain and Range Domain: List of the individual <i>x</i> values of		Range: List of the individual y values of		
in Discrete Graphs	the coordinates graphed	the coordinates graphed		

2) Determine if the following graphs are functions and list their domain and range.

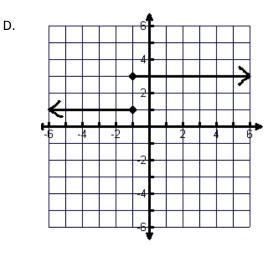
Domain and Range	Domain: The spread of all x values	Range: The spread of all y values			
in Continuous shown on the graph		shown on the graph			
Graphs	$start \le x \le end$	$start \le y \le end$			


3) Determine if the following graphs are functions and list their domain and range.



Range: _____

C.


i unction.	705	110	
Domain:			
Range:			

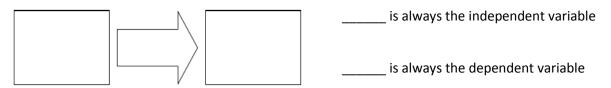
Function: Yes No

Domain: _____

Function: Yes

No

Domain: _____


Range: ______

DOK 2: Model

You will use function notation to model real-world scenarios

Independent and Dependent Variables

1) Identify dependent and independent variables in each situation

		Independent variable	Dependent variable
a)	More electricity is used when the outside temperature goes up, and less is used when the outside temperature goes down.		
b)	The cost of shipping a package is based on its weight		
c)	The faster Tom walks, the quicker he gets home		
d)	David measures how many inches his tomato plants grown each week		

If x is the independent variable and y is the dependent variable, then you can use **FUNCTION NOTATION** to write y = f(x), which is read "y equals f of x," where f names the function. When an equation in two variables describes a function, you always can use function notation to write it.

The dependent variable	is	a function of	the independent variable
У	is	a function of	x
У	=	f	<i>(x)</i>

2)	Write an equation in function notation: Amanda babysits and	Time Worked in Hours (x)	1	2	3	4	1
	,	Amount Earned in Dollars (y)	5	10	15	20]

a.	The	is	five ti	mes _		
b.	An algebraic expression that	Amount earned	is	\$5	times	the number of hours worked.
	defines a function is a FUNCTION RULE . Write an equation using two	Ļ	Ļ	Ļ	Ļ	Ļ
	variables to show this relationship.		=	5	•	
c.	Translate the equation to function notation.		=	5	•	

____ PAGE: ___

CLASSWORK/NOTES NAME: _____ PAGE: _____ PA

_____ depends upon _____ a. therefore the independent variable is ______ and the dependent variable is b. Pick a letter to represent the independent variable and write a function rule in function notation: c. Use the function rule to solve the problem. Write a sentence interpreting your answer. 4) The admission fee at a carnival is \$9. Each ride costs \$1.75. How much does it cost to go to the carnival and then go on 12 rides? a. ______ depends upon ______, therefore the independent variable is ______ and the dependent variable is b. Pick a letter to represent the independent variable and write a function rule in function notation: c. Use the function rule to solve the problem. Write a sentence interpreting your answer. 5) Kate earns \$7.50 per hour. How much money will she earn after working 8 hours? _____ depends upon _____ a.

b. Pick a letter to represent the independent variable and write a function rule in function notation:

therefore the independent variable is ______ and the dependent variable is

c. Use the function rule to solve the problem. Write a sentence interpreting your answer.

CLASSWORK/NOTES NAME: _____ PAGE: _____ Algebra 1-2: 2.4b Modeling with Functions – Function Notation Practice (textbook section 3.3) DOK 2: Model You will use function notation to model real-world situations 1) Rewrite the following equations using function notation: a. y = 3x + 1b. p = 45n - 2500c. $h = -16t^2 + 20t + 8$ 2) Evaluate function for the:

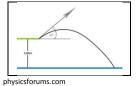
Domain: f(x) = 3x - 15 for x = 5 or

Range: f(x) = 3x - 15 for f(x) = 22

Try it out!

- 3) Rocko needs to lose weight to wrestle in the 104 pound weight class. He currently weighs 135 pounds and estimates that he can lose an additional 2.5 pounds per week.
 - a. What are the independent and dependent variables in this problem?
 - b. Complete the table representing the function.

c. Represent the function using function notation.


CLASSWORK/NOTES	NAME:	PAGE:
d. How could you express his goal of 104 po	unds in function notation?	

e. When will he make weight? Use mathematics to justify your answer.

FLYING T-SHIRTS

4) Marcus is launching t-shirts into a crowd of people from the top of a 30ft tower. The height of the t-shirts above the tower as a function of time can be described by the function below.

 $h(t) = -16t^2 + 50t + 30$. Use the function to determine the height of the t-shirt at each given time in seconds. Write a complete sentence to interpret your solution in terms of the problem situation.

- f. h(3) = g. h(0) = h. h(5) =
- i. What is special about the value of h(0)?

j. Look at the height for h(5). Since the tower is 30 feet tall, what does this tell you about what has happened to the t-shirt?

NAME:

_____ PAGE: ____

Algebra 1-2: 2.5a Modeling with Functions - Domain and Range of Discrete Data

(textbook section 3.3-3.4) DOK 2: Analyze

You will: Identify and describe the domain and range of a function

Discrete Data:	Continuous Data:
Domain (x) values are limited to certain values	Domain (x) values include any values in a given range
Examples:	Examples:

 The temperature in a house drops 2°F for every hour the air conditioner is on between the hours of 6:00 am and 11:00 am. The following is a list of times and the temperature in the house: 6am, 82°F; 8 am, 78°F; 9 am, 76°F; 10 am, 74°F; and 11 am, 72°F. Find the domain and range of the time vs. temperature.

Domain: {_____}. Range: {_____}.

When a function describes a real-world situation, every real number is not always a *reasonable* choice for the domain and range. For example:

- Could the number representing the length of an object be negative?
- Could you have fractions that represent the number of people at an event?

Write a function in function notation for each situation. Find a reasonable domain and range for each function.

- 2) Manuel has already sold \$20 worth of tickets to the school play. He has 4 tickets left to sell at \$2.50 per ticket.
 - a. Write a function for the total amount collected from ticket sales. Let *t* represent the number of tickets to sell.
 - b. Manuel has only 4 tickets left to sell, so a reasonable domain is {_____}}.
 - c. Substitute these values into the function rule to find the range values.

 CLASSWORK/NOTES
 NAME: _______ PAGE: _____

 3) The temperature early in the morning is 17 °C. The temperature increases by 2 °C for every hour for the next 5 hours. Write a function for the temperature in degrees Celsius.

 a. Write a function for the temperatures after h hours.

 b. A reasonable domain is {_______}.

 c. Substitute these values into the function rule to find the range values.

 Range = {______}.

- 4) A cable company charges new customers \$40 for installation and \$60 per month for its service. You are going to sign a one year service agreement.
 - a. Write a function for the cost of playing *m* months of service.
 - b. A reasonable domain is {_____}}.
 - c. Substitute these values into the function rule to find the range values.

	Range: {							 	 }	}.
d.	Graph the function	t								
		L								
		L								
		L								
		Г								
								-		
	0	0						-		

e. The company decided to offer a sale to attract new customers and reduced the installation fee to \$5. Write a function that models this new situation. Find f(3) for the new function and explain what the solution means in the context of the problem.

CLASSWORK/NOTES	NAME:	PAGE:
Algebra 1-2: 2.5b Modeling with Fu	nctions: Domain and Range of Continuous Data	
(textbook sections 3.3-3.4)	DOK2: Analyze	
You will: Identify and describe the domain a	nd range of a function	

- 1) For a babysitting job, Cara charges \$2 for bus fare plus her hourly rate. Cara uses the function C(h) = 2+8h to determine the total charge for a babysitting job that lasts *h* hours. Because of school and her curfew, Cara can only babysit between 4:00pm and 10:00pm. She has a minimum charge of 2 hours. Find the domain and range of the function.
 - a. List the terms in the function and interpret what they represent.

- b. The domain represents______. The range represents______. What are the restrictions? Do they effect the domain or range?
- c. Translate the restrictions into a reasonable domain $\leq x \leq$ _____.

d. Substitute these values into the function rule to find the range values.

≤	у	≤	
---	---	---	--

- 2) An above-ground swimming pool is leaking. The function h(d) = 48 1.5d gives the height of the water in the pool in inches *d* days after the leak began.
 - a. List the terms in the function and interpret what they represent.
 - b. The domain represents______. The range represents______. What are the restrictions? Do they effect the domain or range?
 - c. Translate the restrictions into a reasonable domain and range

Domain: $_ \leq x \leq _$

NAME: _____ PAGE: ____

NAME:

PAGE: ____

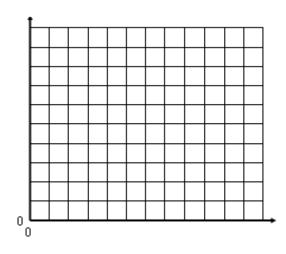
Algebra 1-2: 2.6 Multiple Representations of Functions (textbook sections 3.3-3.4)

DOK 2: Model

You will represent functions in four ways: verbally, algebraically, numerically, and visually.

The Four	Verbally	By a description in words
Representations of	Algebraically	By an explicit rule/equation
Functions	Numerically	By a table of values, list of ordered pair or mapping diagram
	Visually	By a graph

Verbally


Algebraically (use function notation)

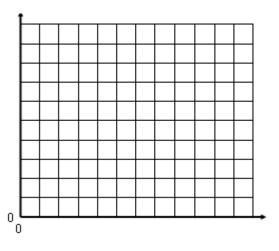
1) A plumber charges a trip charge of \$50 plus \$65 for each hour worked (no partial, always rounded up). Your maximum budget is \$450.

Domain

Visually

Numerically

Range

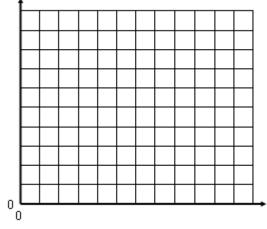

Verbally

2)

Algebraically (use function notation)

 $h(t) = 200 - 16t^2$ where h(t) represents the bungee jumper's height t seconds after leaving the jumping platform.

> Domain: 0 seconds $\leq x \leq 3.5$ seconds Range: 0 feet $\leq y \leq 200$ feet

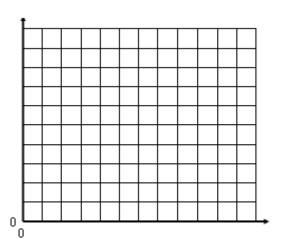


Numerically

CLASSWORK/NOTES Verbally			NAME: se function notation)	PAGE:
3) Brian is riding his	bicycle at a constant			
speed of	miles per hour from			
the school to the	library which is	Domain	Range	
miles from the sc	hool.			
Numerically		Visually	••••	

Time in hours	Miles to Library
0	24
0.5	18
1.0	12
1.5	6
2.0	0

Verbally


 4) Tickets to a science museum cost \$20 each. There is a \$3 service charge for each order no matter how many tickets are purchased. Write an equation for the cost Domain (in dollars) of ordering tickets.

Numerically

Visually

Algebraically (use function notation)

